Singular 0/1-Matrices, and the Hyperplanes Spanned by Random 0/1-Vectors

نویسندگان

  • Thomas Voigt
  • Günter M. Ziegler
چکیده

Let Ps(d) be the probability that a random 0/1-matrix of size d× d is singular, and let E(d) be the expected number of 0/1-vectors in the linear subspace spanned by d − 1 random independent 0/1-vectors. (So E(d) is the expected number of cube vertices on a random affine hyperplane spanned by vertices of the cube.) We prove that bounds on Ps(d) are equivalent to bounds on E(d): Ps(d) =

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 6 A ug 2 00 4 Singular 0 / 1 - matrices , and the hyperplanes spanned by random 0 / 1 - vectors

Let Ps(d) be the probability that a random 0/1-matrix of size d× d is singular, and let E(d) be the expected number of 0/1-vectors in the linear subspace spanned by d − 1 random independent 0/1-vectors. (So E(d) is the expected number of cube vertices on a random affine hyperplane spanned by vertices of the cube.) We prove that bounds on Ps(d) are equivalent to bounds on E(d): Ps(d) =

متن کامل

ec 2 00 8 Singular 0 / 1 - matrices , and the hyperplanes spanned by random 0 / 1 - vectors

Let Ps(d) be the probability that a random 0/1-matrix of size d× d is singular, and let E(d) be the expected number of 0/1-vectors in the linear subspace spanned by d − 1 random independent 0/1-vectors. (So E(d) is the expected number of cube vertices on a random affine hyperplane spanned by vertices of the cube.) We prove that bounds on Ps(d) are equivalent to bounds on E(d): Ps(d) =

متن کامل

6 A ug 2 00 3 Singular 0 / 1 - matrices , and the hyperplanes spanned by random 0 / 1 - vectors

Let Ps(d) be the probability that a random 0/1-matrix of size d× d is singular, and let E(d) be the expected number of 0/1-vectors in the linear subspace spanned by d − 1 random independent 0/1-vectors. (So E(d) is the expected number of cube vertices on a random affine hyperplane spanned by vertices of the cube.) We prove that bounds on Ps(d) are equivalent to bounds on E(d): Ps(d) =

متن کامل

Computation of the Singular Value Decomposition

then σ is a singular value of A and u and v are corresponding left and right singular vectors, respectively. (For generality it is assumed that the matrices here are complex, although given these results, the analogs for real matrices are obvious.) If, for a given positive singular value, there are exactly t linearly independent corresponding right singular vectors and t linearly independent co...

متن کامل

Non-Asymptotic Theory of Random Matrices Lecture 16: Invertibility of Gaussian Matrices and Compressible/Incompressible Vectors

We begin this lecture by asking why should an arbitrary n × n Gaussian matrix A be invertible? That is, does there exist a lower bound on the smallest singular value s n (A) = inf x∈S n−1 Ax 2 ≥ c √ n where c > 0 is an absolute constant. There are two reasons (or cases) which we will pursue in this lecture. 1. In Lecture 15 we saw that the invertibility of rectangular (i.e., non-square) Gaussia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2006